

Multi-pathogen Detection

- To produce a rapid method to detect known and emerging pathogens
 - Those that are already present in NY and also pathogens that are present in other parts of the country/world but not yet in NY
- Want to detect multiple pathogens at the same time
 - Fungi and oomycetes (Smart), bacteria (Charkowski), viruses (Perry)
- Started with pathogens of solanaceous crops (potato, tomato, pepper, eggplant)

Fungal/oomycete ribosomal RNA gene repeats

Target Gene: Internal Transcribed Spacer (ITS)

- Variability enables discrimination of closely related species
- Well studied for fungal phylogeny, and therefore a large number of ITS sequences are available
- •Universal primers available

Pathogen Detection Macroarray

Ning Zhang

Probes (Oligonucleotides)

Nylon Memberane (Hybond N+)

96-pin replicator

Hybridization

Signal Detection (Kodak Film)

Keys to Success

- Ensuring all probes have a similar annealing temp can be tricky.
- Hybridization temperature!!
 - 55 C was the temp that worked with our set of probes.
- Probe length and G+C content
 - We found that probe length (22 bp) was more important than GC content in our experiments (50% GC was optimal)
- Location of SNP mismatch in the probe
 - Central mismatch enabled much greater specificity than an end mismatch
- Amount of probe on membrane
- Concentration of PCR amplicon

Two closely related strains of FSSC with one SNP differentiating the strains

Array hybridized with PCR amplicon from strain 1

Single Nucleotide Polymorphisms can be distinguished by probe at bottom of row 2

Array hybridized with PCR amplicon from strain 2

Pathogen Detection Macroarray

- The current array has 141 oligos (including controls) for the detection of 32 pathogens – plus 12 members of FSSC
 - Minimum of two probes per pathogen
- The array has been tested for cross-hybridization with DNA from 29 of the 32 pathogens (could not obtain DNA from 3) as well as dozens of non-pathogens
- Can detect as little as 0.04pg DNA

Pathogens on Array

Probes designed and tested		Probes designed/not tested
Alternaria alternata Alternaria solani	Phytophthora infestans Ph. nicotianae	Pyrenochaeta Iycopersici
Botrytis cinerea Colletotrichum acutatum	Ph. erythroseptica Pythium aphanidermatum	Oidiopsis sicula
Col. coccodes Col. gloeosporioides Corynespora cassiicola	Pythium myriotylum Pythium ultimum Pythium irregulare	Synchytrium endobioticum
Fulvia fulva Fusarium oxysporum	Pythium cryptoirregulare Rhizoctonia solani	
Fusarium sambucinum Fusarium solani complex (12)	Septoria sp. Sclerotinia sclerotiorum	
Oidium neolycopersici Phoma destructiva	Spongospora subterranea Stemphylium solani Verticillium albo-atrum	
Phytophthora capsici	Verticillium dahliae	

Leaf wilting
Vascular discoloration
Unhappy roots
DNA extraction from
roots, stem and leaves

Controls

From DNA Extraction to Array Results:

12 hours

Multiplex Detection Power

H3: Fusarium solani

C6,D6,F6: Phoma destructiva

G9,H9: F. oxysporum

E21,F21: Alternaria alternata

Fusarium spp.

Alternaria alternata

Pathogen Detection Macroarray

- Current array is working well for diseased plant samples
 - We have switched over to isothermal or multiplex real-time PCR assays
- Used extensively in a cover crop study
- Visiting scientist wanted to develop color-based detection method

Detection Methods (light vs. color)

- Detection
 - Chemiluminescent: CDP-Star (GE Healthcare)
 - Chromogenic: Digoxigenin / NBT-BCIP (Roche)
 - Nitro-blue tetrazolium 5bromo-4chloro-3indolylphosphate
- Compared concentration of oligos on membrane: 10-50 pmol

Compared concentration of PCR amplicon (5, 10 & 15 ng/ml)

Mui-Yun Wong Universiti Putra Malaysia

Stemphylium solani

Phytophthora capsici

Light vs Color

- Increased probe concentration on membrane and target DNA PCR amplicon concentration improved signal
- Chromogenic detection method is comparable to chemiluminescent method in terms of specificity and hybridization duration
- Chromogenic method offers a convenient alternative to chemiluninescent method for researchers who do not have dark room facilities

Detection and differentiation of five lineages of *Fusarium* oxysporum f. sp. vasinfectum (Fusarium wilt of cotton)

- First identified in California in 1960
- Widespread in the United States and most cotton-growing areas of the world
- •Typical symptoms: wilting, interveinal chlorosis, brown discoloration of vascular tissue
- Eight races had been described wanted to differentiate 5 lineages

From Mike Davis – UC Davis

Polymorphism (16 SNPs) in the Elongation Factor-1alpha gene (673 bp)

26 Fov-specific probes. Lineage-specific probes in circles. Positive controls in rectangles.

What's next for multi-pathogen detection?

- If we are looking for 1 particular SNP high resolution melt analysis (differentiate one lineage from all others)
- If we want to look for a larger number of pathogens, we currently use multiplex realtime PCR with differentially labelled probes
 - Can detect far fewer pathogens than on the array

Phytophthora infestans

Melt curve showing lineage US-23 with a different melt temp than other lineages

Acknowledgements

- Ning Zhang now at Rutgers
- Mui-Yun Wong U Putra Malaysia
- Carly Summers Grad Student
- Keith Perry Cornell U
- Amy Charkowski U Wisconsin
- Mike Davis UC Davis
 - Cotton growers

